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LETTER TO THE EDITOR 

Approximate solution of the damped Burgers equation 

W Malfliet 
Department of Physics, University of Antwerp (UIA). 8-2610 Wilrijk, Belgium 

Received 23 March 1993 

Abstract. To derive an approximate solution of the damped Burgers equation, we use the 
tanh method as a perturbation technique. As a result, a damped shock-wave structure 
appears which moves with a decreasing velocity. In  particular a bump type of behaviour 
appears, after a certain time, in the tails of the solution. 

When solving nonlinear wave equations, one usually looks for travelling waves so that 
one deals with ordinary differential equations. Several techniques are available to 
solve them: direct integration, transformation or substitution (in fact trial and error), 
or other more involved methods such as the Hirota method (1980), the PainlevC 
expansion (Kudryashov 1991) or the direct algebra method (Hereman and Tanaoka 
1990). Unfortunately, most of them are rather complex and moreover, not adapted 
for use as a perturbation technique. 

In 1990, Huibin and Kelin introduced a series expansion in terms of a tanh 
function, to solve a Kdv-Burgers type of equation. A more systematic version of this 
tanh method was developed afterwards (Malfliet 1992,1993) and applied to conserva- 
tive systems. Some new results were established and the ease of use is remarkable. 
Like with other methods, stable waveforms are found which travel with a constant 
velocity. 

In this letter we show that the tanh method also can be used to search for 
approximate solutions of nonlinear wave equations which arise in non-conservative 
systems. As an example we deal with a dissipative system, and in particular with the 
damped Burgers equation. 

A perturbation theory to study those wave equations, starting from the exact 
solution which is known when dissipation vanishes, is not trivial to develop. Take for 
instance the Kdv equation in which a linear damping is added. In that case a particular 
perturbation approach was used (see, for instance, Lamb (1980) and references 
therein). First, the time evolution of the scattering data, which originate from the 
inverse scattering technique, is investigated. Next, the dynamics of the relevant 
quantities is studied. The calculations, however, are cumbersome and despite con- 
siderable efforts, the results are not satisfactory. Moreover, such technique cannot be 
used in general and obviously not in this case. 

We propose a somewhat different approach. In the first place, the unperturbed 
solution is taken as a starting point and we only allow a time-dependent amplitude and 
velocity. Next we introduce an infinite series expansion in tanh with time-dependent 
coefficients. In this way, calculations turn out to be straightforward. As an example 
we have chosen the (damped) Burgers equation. It appears as a model equation in 
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fluid mechanics to describe diffusive waves (Sachdev 1987), subjected to dissipation. 
It is written as 

au au a k  
at ax axz 

--+ U ---+ Au =o. 

We look for a travelling wave solution u(x,t) of this nonlinear equation. If no 
dissipation is present, only one coordinate is required: (=c(x- ut). Therefore, we 
introduce 

4% t) = U((>  t) witht=c(x-@(t)). (2)  
The quantity U ( ( ,  t) represents a (localized) solution, which travels with speed 
d@(r)ldt. It exemplifies a wave with a characteristic width L =c-', which plays the role 
of a wavelength (c: wavefactor). In contrast with other perturbation methods we do 
not allow any time dependence of that quantity c,  in order to avoid secular terms 
(terms proportional to x). 

After transformation from the (x, t) to the (5 ,  I) variables, we get 

In analogy with the conservative Burgers' case ( A = O ) ,  we look for solutions which 
obey the boundary conditions: 

Next, we introduce Y=tanh(E) as a new variable. As a consequence, U(E,t) is 
replaced by S(Y, I), ala( by (1 - Y' )  a/aY and #/at2 by (1 - Y' )  [(l- Y ' )  a/aYl 
Nay. Then (3) is rewritten as 

+AS(Y, t) = 0 
w y ,  r )  

at +- 
As an ansatz, we postulate the following solution: 

s ( Y ,  I) = G(I)(1 - Y)(1 + U,(I)Y+ U,(I)Y'+ U3(t)p + Q,(l)Y4+ . . .) 
with Y=tanh[c(x-@(t))]. (6) 

It is based on the fact that for I=O (no dissipation), the exact solution is definitely 
written in ferms of S'(Y), or as U'(() (Y or 5 being the only variable involved). It 
reads: 

with Y = tanh 5 = tanh[c(x - ut)] and D = 2c. (7) 

The boundary condition here is U'(()-0 for {++CO or S'(Y)+O for Y+ + 1. 
Hence, the boundary condition (4) likewise appears in~(6). 

This ansatz (6) is then substituted in equation (5). Next, one collects all terms 
proportional to Y" (n=O, 1,2,3,. , .). This set will actually serve as a set of 
recurrence relations. Putting them equal to zero, we indeed get relations between the 

S'( y) = 2c(l - r) 
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different time dependent unknown quantities G(t), @(r) and ( t ) .  We choose a,(t) = 
a,(t)=O, so that in order (lowest order) we amve at: 

Obviously 

and 

As a solution of these equations we choose: 

G(r) = 2c e-'' 

and 
2c 

dr a 
_- d@(4 - 2ce-"or @(t) =- (1 -e-"). 

The initial condition for G(t) at t = O  is put equal to 2c, in order to satisfy the earlier 
results for 1=0. Indeed, in that case we have G(t) = 2c and @(t) =2ct. The amplitude, 
as well as the velocity, are now decaying functions in time. 

In next order, i.e. all terms proportional to Y' we get the relation 

d@(O 
P G ( t )  +6ZG(t)a,(t) - CT G(t)=O 

which yields 

1 
a3(t)=-(e-A'-1). 3 (13) 

The fundamental quantities a&), aj( t ) ,  . . . can be found successively by investigating 
the associated recursion relation belonging to p, p, . . . . Amazingly, from the next 
recurrence relation, we get a,([) =a,(t) .  In general 

a,+,(t)=a,,, ,(t)forn=l,2,3,. . . . (14) 
The next relevant coefficient is: 

1 
602 a5(t) = - - (A e-"'+ 8cz e-ur- 402 e-* + 322). (15) 

Notice that a.(t) = 0 (n = 0, 1,2, . . .) for 1 = 0. 
Finally, the approximate solution of the damped Burgers equation reads: 

u(x. t )  = 2c e-"(l- Y){l+ a3(r)Y3(i t Y) t a5(r)Ys(1 t Y) t a,(t)Y'(l+ Y) . . . ] 
xwith Y=tanh[c(.r-(2c/A)(l-e-"))]. (16) 

How many terms one has to take into account depends on the value of the 
damping factor A. Remark, however, that for Y-0 and Y--1 (the boundary 
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U ( X , t )  

-5 -4 .3 -2 -1 0 1 2 3 4 5 6 7 8 9 

Figurel. Dynamics of the damped shock wave. Parameters are A=0.2 and c = l .  
Correction terms are included up to O(YR). At t = O  (full cuwe) lhe shock wave sbrts to 
damp. The next stages are: (a) 1=0.5 (chain curve), (b )  t =  1 (broken cuye).  (c) 1=2 
(dotted curve) and (d) 1=5  (dotted-chain curve). From 1 - 5  on, the tails start to show a 
bump-type of behaviour. This shock wave will eventually damp away at the point 
x-2c/,l=10. 

condition for x or t+-m) the solution is not affected by the correction terms 
between the last brackets. The boundary condition at the left-hand side (Y+-  1) just 
decays exponentially. This damped shock wave moves with a gradually diminishing 
velocity. As a result, it propagates a finite distance 

L-2c l i .  (17) 
The dynamical behaviour of this approximate solution is shown in figure 1. I n  this 

typical example, we observe that the shock wave structure lowers its amplitude 
considerably. As a consequence, the nonlincar term, responsible for steepening the 
wave, is less important and the steepening effect will be weakened. In the beginning 
the correction terms do  not play a significant role and can in fact be ignored. After 
some time ( t -5 )  a hump-type of behaviour arises at the tails of the shock. Then the 
solution even becomes negative in the tail on the right-hand side. More correction 
terms must be taken into account, as is shown in figure 2. Note, however, that the 
wave in this stage is almost damped away ( t =  10). The effect of these bumps is due to 
the correction terms C,+,(Y) = (1 - Y)yz"71(1 + r), combined with the fact that for 
t + m ,  the coefficientsa,+,(r) do not vanish. Indeed, in the limit t - a ,  they behave as 
follows: 

uj(t)-+ - (113) a,(t)-+ -(8/15) a,(f)+ - (71/105) 

ag(f)-t -(248/315) ~ , , ( t ) +  - (3043/3465), etc.. . . (18) 
They represent a bounded series of terms because 
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Figure2. Influence of the correction terms at the tails of the approximate solution. The 
same approximative sdution as in figure 1 is used, but sketched at a later time ( r  = IO). The 
full curve represents the solution without correction terms (n,(f)=O), and in the subse- 
quent curves one more correction term (two orders in Y) is added respectively. 

Convergence is assured because G2n+l(Y) vanishes for n+ a. Notice that in the case 
of a damped Kdv equation a kind of negative bump also appears at the tail of the 
damped soliton (Leibovich 1979). As already mentioned, it is clear from figure 2 that 
the the main bulk of the shock (Y=0) does not change much if one adds more 
correction terms. 

With this example we have shown that it must be possible to use the tanh 
technique as a perturbation method to analyse nonlinear wave equations which are 
not exactly integrable. As a model, we have analysed the Burgers equation, in which 
dissipation occurs. To investigate other equations as well, there is one condition: the 
unperturbed solution must be a function (in one way or another) of a tanh. At 
present, more than 20 nonlinear wave and evolution equations possess this behaviour. 
The present analysis suggests that this technique can be advantageously used in more 
general cases. 

Frank Verheest (RU Gent) is acknowledged for reading the manuscript. 
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